- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Sun, Bin (5)
-
Ioana, Adrian (2)
-
Osin, Denis (2)
-
Bakr, Osman M. (1)
-
Chifan, Ionut (1)
-
Chifan, Ionuţ (1)
-
De Bastiani, Michele (1)
-
Dursun, Ibrahim (1)
-
García de Arquer, F. Pelayo (1)
-
Gartstein, Yuri N. (1)
-
Goroff, Nancy S. (1)
-
Guo, Tianle (1)
-
Haque, Md Azimul (1)
-
Lux, Daniel M. (1)
-
Malko, Anton V. (1)
-
Mohammed, Omar F. (1)
-
Patterson, Eric V. (1)
-
Saidaminov, Makhsud I. (1)
-
Sargent, Edward H. (1)
-
Shafieezadeh, Abdollah (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chifan, Ionuţ; Ioana, Adrian; Osin, Denis; Sun, Bin (, Annals of Mathematics)We introduce a new class of groups called {\it wreath-like products}. These groups are close relatives of the classical wreath products and arise naturally in the context of group theoretic Dehn filling. Unlike ordinary wreath products, many wreath-like products have Kazhdan's property (T). In this paper, we prove that any group $$G$$ in a natural family of wreath-like products with property (T) is W$^*$-superrigid: the group von Neumann algebra $$\text{L}(G)$$ remembers the isomorphism class of $$G$$. This allows us to provide the first examples (in fact, $$2^{\aleph_0}$$ pairwise non-isomorphic examples) of W$^*$-superrigid groups with property (T).more » « less
-
Chifan, Ionut; Ioana, Adrian; Osin, Denis; Sun, Bin (, Annals of mathematics)
-
Sun, Bin; Lux, Daniel M.; Patterson, Eric V.; Goroff, Nancy S. (, The Journal of Organic Chemistry)null (Ed.)
-
Dursun, Ibrahim; Zheng, Yangzi; Guo, Tianle; De Bastiani, Michele; Turedi, Bekir; Sinatra, Lutfan; Haque, Md Azimul; Sun, Bin; Zhumekenov, Ayan A.; Saidaminov, Makhsud I.; et al (, ACS Energy Letters)
An official website of the United States government

Full Text Available